
Fiber Ropes for building up ropeways

Konstantin Kuehner, IFT University of Stuttgart Urs Schneider, Jakob AG Fredy von Moos, Garaventa AG

1. State of the art in rope mounting

- Time of pioneers: manual transport of main rope
 - by mules (end of 19th century)
 - by human hand (begin of 20th century)
- Manual transport of an advanced <u>pre-rope</u> (around 1950)

2. Problem and Solution

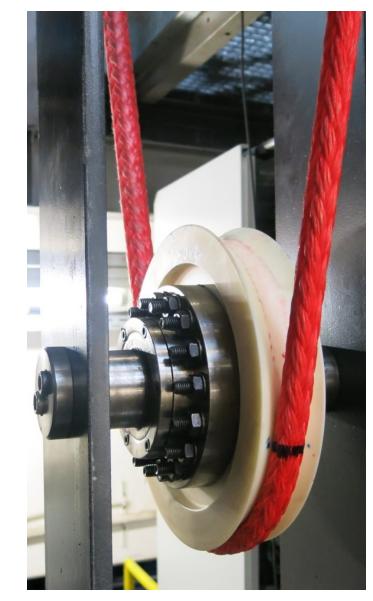
Today: helicopter transport & multiple pre-ropes

Problems:

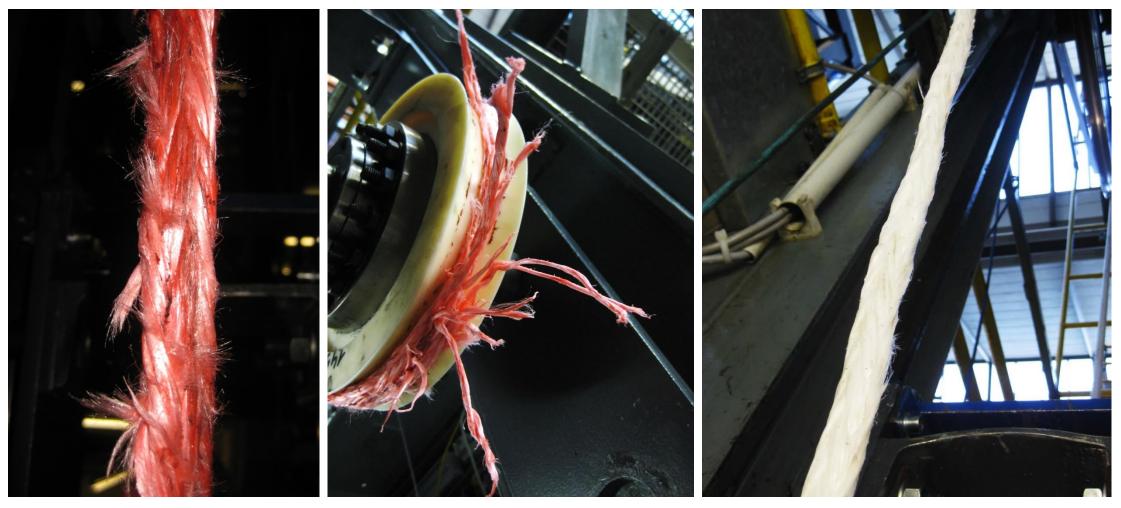
- Expensive and time-consuming
- Increased risk of accidences within rope pull
- Rope twist has to be compensated
- Work is highly dependent on weather

Idea:

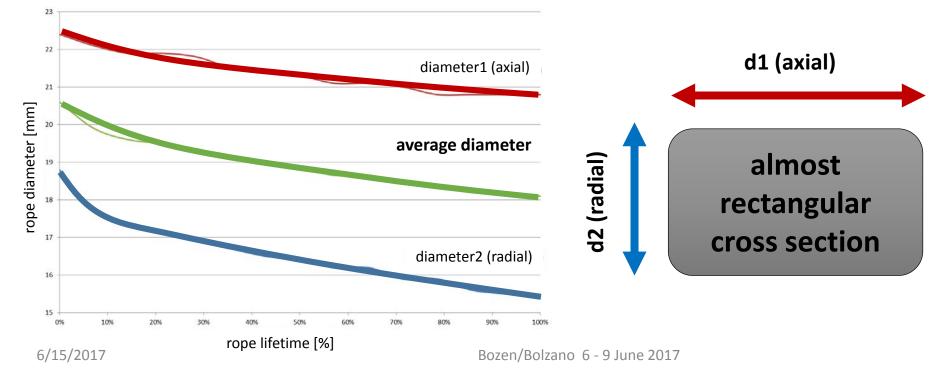
Helicopter transport of a single high-tensile fiber rope and direct pull of the final main rope

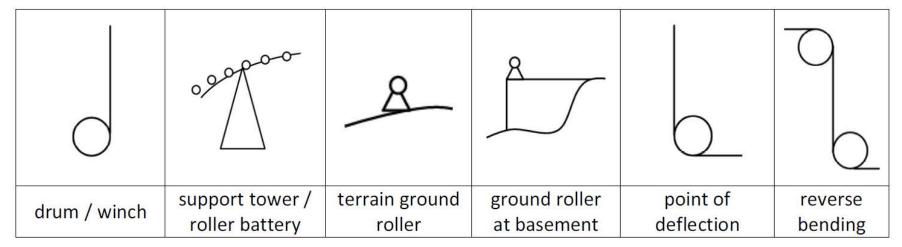

2. Problem and Solution

- Garaventa AG and Jakob AG:
 - Selection of a pilot rope
 - Proof of basic feasibility by first rope pull
- IFT University of Stuttgart:
 - Investigation of operational limits by laboratory testing
 - Setup of a user-manual



- 3 different rope designs
- Ø 22mm, breaking load 300kN, material Dyneema
- Bending tests on polyamide sheave




- Continuous diameter reduction of ropes
- Ropes only show little outer wear in advance, first strand breaks only occur close to total rope failure

4. Realization (II): user manual for field application

- Introduction of discard maturity and visual inspection
- Determination of bending cycles until discard in style of DIN 15020-part 1
- Rope exchange after 6 years or additional tests by manufacturer or accredited experts

4. Realization (II): user manual for field application

Application protocol and point rating system until discard

LIROS D-Pro-XTR "red" with protective cover, Inventory no. 000.1					
Initial operation of rope: 17.09.2016					
	1	2	3	4	5
project / Location	Mount Example				
date	xx.xx xx.xx.2016				
used auxiliary devices	1 x drum (pay-off)				
	2 x support tower				
	2 x terrain ground roller				
	1 x reverse bending				
	1 x point of deflection				
	1 x winch (drive)				
bending cycles	9 (fictive project!)				
per rope pull					
amount of rope pulls	4				
sum of bending cycles	36				
residual maximum	266 (fictive project!)				
amount of bending					
cycles					
visual inspection	no abnormalities				
person in charge	Kuehner, IFT Uni Stuttgart				

5. Conclusion and prospects

- Rope pulls using high tensile fiber ropes are technically feasible
- User, manufacturer and test laboratories have determined safe limitations for in-field operation
- User-manual and documentation allow an increase of efficiency by a growing base of experience
- Presented method can be exemplary for industrial application of high-tensile fiber ropes

Thank you.

|----